TY - JOUR
T1 - Control of clathrin-mediated endocytosis by NIMA family kinases
AU - Joseph, Braveen B.
AU - Wang, Yu
AU - Edeen, Phil
AU - Lazetic, Vladimir
AU - Grant, Barth D.
AU - Fay, David S.
N1 - Funding Information:
This work was supported by the National Institutes of Health Institutes of General Medicine (NIGMS) GM066868 to DSF. This publication was also made possible by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant # 2P20GM103432, which partially supported BJ and VL. Some strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by the US National Institutes of Health (NIH) Office of Research Infrastructure Programs (P40 OD010440). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2020 Joseph et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020
Y1 - 2020
N2 - Endocytosis, the process by which cells internalize plasma membrane and associated cargo, is regulated extensively by posttranslational modifications. Previous studies suggested the potential involvement of scores of protein kinases in endocytic control, of which only a few have been validated in vivo. Here we show that the conserved NIMA-related kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (the NEKLs) control clathrin-mediated endocytosis in C. elegans. Loss of NEKL-2 or NEKL-3 activities leads to penetrant larval molting defects and to the abnormal localization of trafficking markers in arrested larvae. Using an auxin-based degron system, we also find that depletion of NEKLs in adult-stage C. elegans leads to gross clathrin mislocalization and to a dramatic reduction in clathrin mobility at the apical membrane. Using a non-biased genetic screen to identify suppressors of nekl molting defects, we identified several components and regulators of AP2, the major clathrin adapter complex acting at the plasma membrane. Strikingly, reduced AP2 activity rescues both nekl mutant molting defects as well as associated trafficking phenotypes, whereas increased levels of active AP2 exacerbate nekl defects. Moreover, in a unique example of mutual suppression, NEKL inhibition alleviates defects associated with reduced AP2 activity, attesting to the tight link between NEKL and AP2 functions. We also show that NEKLs are required for the clustering and internalization of membrane cargo required for molting. Notably, we find that human NEKs can rescue molting and trafficking defects in nekl mutant worms, suggesting that the control of intracellular trafficking is an evolutionarily conserved function of NEK family kinases.
AB - Endocytosis, the process by which cells internalize plasma membrane and associated cargo, is regulated extensively by posttranslational modifications. Previous studies suggested the potential involvement of scores of protein kinases in endocytic control, of which only a few have been validated in vivo. Here we show that the conserved NIMA-related kinases NEKL-2/NEK8/9 and NEKL-3/NEK6/7 (the NEKLs) control clathrin-mediated endocytosis in C. elegans. Loss of NEKL-2 or NEKL-3 activities leads to penetrant larval molting defects and to the abnormal localization of trafficking markers in arrested larvae. Using an auxin-based degron system, we also find that depletion of NEKLs in adult-stage C. elegans leads to gross clathrin mislocalization and to a dramatic reduction in clathrin mobility at the apical membrane. Using a non-biased genetic screen to identify suppressors of nekl molting defects, we identified several components and regulators of AP2, the major clathrin adapter complex acting at the plasma membrane. Strikingly, reduced AP2 activity rescues both nekl mutant molting defects as well as associated trafficking phenotypes, whereas increased levels of active AP2 exacerbate nekl defects. Moreover, in a unique example of mutual suppression, NEKL inhibition alleviates defects associated with reduced AP2 activity, attesting to the tight link between NEKL and AP2 functions. We also show that NEKLs are required for the clustering and internalization of membrane cargo required for molting. Notably, we find that human NEKs can rescue molting and trafficking defects in nekl mutant worms, suggesting that the control of intracellular trafficking is an evolutionarily conserved function of NEK family kinases.
UR - http://www.scopus.com/inward/record.url?scp=85081069771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081069771&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1008633
DO - 10.1371/journal.pgen.1008633
M3 - Article
C2 - 32069276
AN - SCOPUS:85081069771
SN - 1553-7390
VL - 16
JO - PLoS Genetics
JF - PLoS Genetics
IS - 2
M1 - e1008633
ER -