Convective transport in an optical fiber coating applicator for a non-Newtonian fluid

Sang Yeoun Yoo, Yogesh Jaluria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Convective transport in an optical fiber coating applicator and die system has been simulated for a non-Newtonian fluid. Low density Polyethylene (LDPE) is employed for the numerical analysis, though ultraviolet (UV) curable acrylates are commonly used, because of lack of property information for acrylates and similar behavior of these two materials. The equations governing fluid flow and heat transfer are transformed to obtain flow in a cylindrical domain. A SIMPLE-based algorithm is used with a non-uniform grid. In contrast to the isothermal case, stream-lines for the non-Newtonian fluid are found to be quite different for various fiber speeds. The temperature level in the applicator is much higher for the Newtonian case, due to the larger fluid viscosity and associated viscous dissipation. The shear near the fiber is found to be lower for the Newtonian fluid. As expected, the effects become larger with increasing fiber speed. A very high temperature rise is observed in the die, regardless of fiber speed. This study focuses on the non-Newtonian effects during the coating process, and several interesting and important features, as compared to the Newtonian case, are observed.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Heat Transfer Division 2005
Pages879-888
Number of pages10
Edition2
DOIs
StatePublished - 2005
Event2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005 - Orlando, FL, United States
Duration: Nov 5 2005Nov 11 2005

Publication series

NameAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
Number2
Volume376 HTD
ISSN (Print)0272-5673

Other

Other2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005
Country/TerritoryUnited States
CityOrlando, FL
Period11/5/0511/11/05

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Convective transport in an optical fiber coating applicator for a non-Newtonian fluid'. Together they form a unique fingerprint.

Cite this