Abstract
Background/Aims: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol. Methods: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca2+. Results: Increases in flow induced a biphasic rise in NO production: a rapid transient phase (3-5-min) that peaked during the first 15 s, followed by a sustained phase, which lasted until the end of stimulation. Concomitantly, flow caused a rapid translocation of eNOS from the microsomal compartment to the cytosol and Golgi, paralleled by an increase in eNOS phosphorylation and a reduction in eNOS-Cav-1 association. Transient NO production, eNOS translocation and dissociation from Cav-1 depended on extracellular Ca2+, while sustained NO production was abolished by the PI3K-Akt blocker wortmannin. Conclusions: In intact resistance vessels, changes in flow induce NO production by transient Ca2+-dependent eNOS translocation from membrane to intracellular compartments and sustained Ca 2+-independent PI3K-Akt-mediated phosphorylation.
Original language | English (US) |
---|---|
Pages (from-to) | 498-511 |
Number of pages | 14 |
Journal | Journal of Vascular Research |
Volume | 50 |
Issue number | 6 |
DOIs | |
State | Published - Nov 2013 |
All Science Journal Classification (ASJC) codes
- Physiology
- Cardiology and Cardiovascular Medicine
Keywords
- Ca
- Endothelial cells
- Endothelial nitric oxide synthase subcellular location
- Resistance vessels
- Shear stress