Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus

Javiera Norambuena, Hassan Al-Tameemi, Hannah Bovermann, Jisun Kim, William N. Beavers, Eric P. Skaar, Dane Parker, Jeffrey M. Boyd

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.

Original languageEnglish (US)
Article numbere1011393
JournalPLoS pathogens
Issue number5
StatePublished - May 2023

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology


Dive into the research topics of 'Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus'. Together they form a unique fingerprint.

Cite this