Coring method for clustering a graph

Thang V. Le, Casimir A. Kulikowski, Ilya B. Muchnik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Graph clustering partitions a graph into subgraphs with strongly interconnected nodes, while nodes belonging to different subgraphs are weakly connected. In this paper, we propose a new clustering method applicable to either weighted or unweighted graphs in which each cluster consists of a highly dense core region surrounded by a region with lower density. We have developed a highly efficient and robust method to identify nodes belonging to dense cores of clusters. The set of the nodes is then divided into groups, each of which is the representative of one cluster. These groups are finally expanded into complete clusters covering all the nodes of the graph. Experiments with both synthetic and real datasets for gene expression analysis and image segmentation yield very encouraging results.

Original languageEnglish (US)
Title of host publication2008 19th International Conference on Pattern Recognition, ICPR 2008
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781424421756
DOIs
StatePublished - 2008

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Coring method for clustering a graph'. Together they form a unique fingerprint.

Cite this