Covering odd cycles

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

We estimate the number of vertices/edges necessary to cover all odd cycles in graphs of given order and odd girth.

Original languageEnglish (US)
Pages (from-to)393-400
Number of pages8
JournalCombinatorica
Volume17
Issue number3
StatePublished - Dec 1 1997

Fingerprint

Odd Cycle
Girth
Covering
Odd
Cover
Necessary
Graph in graph theory
Estimate

All Science Journal Classification (ASJC) codes

  • Discrete Mathematics and Combinatorics
  • Computational Mathematics

Cite this

Komlos, J. (1997). Covering odd cycles. Combinatorica, 17(3), 393-400.
Komlos, Janos. / Covering odd cycles. In: Combinatorica. 1997 ; Vol. 17, No. 3. pp. 393-400.
@article{59d2d4ec180844dc9bfbef93f2095035,
title = "Covering odd cycles",
abstract = "We estimate the number of vertices/edges necessary to cover all odd cycles in graphs of given order and odd girth.",
author = "Janos Komlos",
year = "1997",
month = "12",
day = "1",
language = "English (US)",
volume = "17",
pages = "393--400",
journal = "Combinatorica",
issn = "0209-9683",
publisher = "Janos Bolyai Mathematical Society",
number = "3",

}

Komlos, J 1997, 'Covering odd cycles', Combinatorica, vol. 17, no. 3, pp. 393-400.

Covering odd cycles. / Komlos, Janos.

In: Combinatorica, Vol. 17, No. 3, 01.12.1997, p. 393-400.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Covering odd cycles

AU - Komlos, Janos

PY - 1997/12/1

Y1 - 1997/12/1

N2 - We estimate the number of vertices/edges necessary to cover all odd cycles in graphs of given order and odd girth.

AB - We estimate the number of vertices/edges necessary to cover all odd cycles in graphs of given order and odd girth.

UR - http://www.scopus.com/inward/record.url?scp=0031443461&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031443461&partnerID=8YFLogxK

M3 - Article

VL - 17

SP - 393

EP - 400

JO - Combinatorica

JF - Combinatorica

SN - 0209-9683

IS - 3

ER -

Komlos J. Covering odd cycles. Combinatorica. 1997 Dec 1;17(3):393-400.