Days on market: Measuring liquidity in real estate markets

Hengshu Zhu, Hui Xiong, Fangshuang Tang, Qi Liu, Yong Ge, Enhong Chen, Yanjie Fu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Scopus citations

Abstract

Days on Market (DOM) refers to the number of days a property is on the active market, which is an important measurement of market liquidity in real estate industry. Indeed, at the micro level, DOM is not only a special concern of house sellers, but also a useful indicator for potential buyers to evaluate the popularity of a house. At the macro level, DOM is an important indicator of real estate market status. However, it is very challenging to measure DOM, since there are a variety of factors which can impact on the DOM of a property. To this end, in this paper, we aim to measure real estate liquidity by examining multiple factors in a holistic manner. A special goal is to predict the DOM of a given property listing. Specifically, we first extract key features from multiple types of heterogeneous real estate-related data, such as house profiles and geo-social information of residential communities. Then, based on these features, we develop a multi-task learning based regression approach for predicting the DOM of real estates. This approach can effectively learn district-aware models for different property listings by considering multiple factors. Finally, we conduct extensive experiments on real-world real estate data collected in Beijing and develop a prototype system for practical use. The experimental results clearly validate the effectiveness of the proposed approach for measuring liquidity in real estate markets.

Original languageEnglish (US)
Title of host publicationKDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages393-402
Number of pages10
ISBN (Electronic)9781450342322
DOIs
StatePublished - Aug 13 2016
Event22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 - San Francisco, United States
Duration: Aug 13 2016Aug 17 2016

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume13-17-August-2016

Conference

Conference22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016
Country/TerritoryUnited States
CitySan Francisco
Period8/13/168/17/16

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Days on market
  • Multi-task learning
  • Real estate

Fingerprint

Dive into the research topics of 'Days on market: Measuring liquidity in real estate markets'. Together they form a unique fingerprint.

Cite this