Decoding the effects of synonymous variants

Zishuo Zeng, Ariel A. Aptekmann, Yana Bromberg

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Synonymous single nucleotide variants (sSNVs) are common in the human genome but are often overlooked. However, sSNVs can have significant biological impact and may lead to disease. Existing computational methods for evaluating the effect of sSNVs suffer from the lack of gold-standard training/evaluation data and exhibit over-reliance on sequence conservation signals. We developed synVep (synonymous Variant effect predictor), a machine learning-based method that overcomes both of these limitations. Our training data was a combination of variants reported by gnomAD (observed) and those unreported, but possible in the human genome (generated). We used positive-unlabeled learning to purify the generated variant set of any likely unobservable variants. We then trained two sequential extreme gradient boosting models to identify subsets of the remaining variants putatively enriched and depleted in effect. Our method attained 90% precision/recall on a previously unseen set of variants. Furthermore, although synVep does not explicitly use conservation, its scores correlated with evolutionary distances between orthologs in cross-species variation analysis. synVep was also able to differentiate pathogenic vs. benign variants, as well as splice-site disrupting variants (SDV) vs. non-SDVs. Thus, synVep provides an important improvement in annotation of sSNVs, allowing users to focus on variants that most likely harbor effects.

Original languageEnglish (US)
Pages (from-to)12673-12691
Number of pages19
JournalNucleic acids research
Volume49
Issue number22
DOIs
StatePublished - Dec 16 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Genetics

Fingerprint

Dive into the research topics of 'Decoding the effects of synonymous variants'. Together they form a unique fingerprint.

Cite this