TY - JOUR
T1 - Decreased vitellogenin inducibility and 17β-estradiol levels correlated with reduced egg production in killifish (Fundulus heteroclitus) from Newark Bay, NJ
AU - Bugel, Sean M.
AU - White, Lori A.
AU - Cooper, Keith R.
N1 - Funding Information:
This research was carried out at the New Jersey Agricultural Experiment Station (NJAES) with funding from NJAES ( 01201 ) through Cooperative State Research, Education, and Extension Services, The Environmental and Occupational Health Sciences Institute ( ES05022 ), the New Jersey Water Resources Research Institute ( 2009NJ198B ), New Jersey Department of Environmental Protection Agency, Division of Science, Research and Technology ( SR09-019 ) and The National Oceanic and Atmospheric Administration ( 432742 ).
PY - 2011/9
Y1 - 2011/9
N2 - Aquatic species inhabiting polluted estuaries are exposed to complex mixtures of xenobiotics which can alter normal reproduction. We previously reported that female Atlantic killifish (Fundulus heteroclitus) from the highly contaminated Newark Bay, NJ (USA) exhibited an inhibition of oocyte development due to reduced vitellogenin (egg-yolk precursor) levels. Our hypothesis was that the inhibition of oocyte development in Newark Bay killifish is due to (1) deficient levels of circulating 17β-estradiol, and (2) a decreased sensitivity of the vitellogenin pathway to physiological doses of 17β-estradiol. In the first study, adult naïve killifish from Tuckerton, NJ (reference) were caged at Tuckerton and Newark Bay. After 1 month, males caged at Newark Bay exhibited inductions of hepatic vitellogenin and estrogen receptor α, which were transient and returned to basal levels after 2 months (p≤. 0.05). In the second study, fecundity and 17β-estradiol levels were measured in reproductively active adult females from Tuckerton and Newark Bay. Tuckerton females produced 140 eggs per female and Newark Bay females produced 11 eggs per female. Embryos from Newark Bay had 34% greater mortality and 28% less hatch, relative to Tuckerton. In addition, embryo mass and yolk-volume of Newark Bay embryos compared to Tuckerton embryos was 16% and 25% lower, respectively. Circulating 17β-estradiol levels in Newark Bay females (0.26 ng/mL) were measured to be 8-fold lower than Tuckerton females (2.25 ng/mL). In the third study, adult killifish from both sites were dosed with 17β-estradiol to assess the sensitivity of the vitellogenin pathway. At doses of 0.01, 0.1, 1 and 10 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay males were significantly inhibited by 97, 99, 98 and 44%, respectively, compared to Tuckerton males. At doses of 0.01, 0.1, 1, 10 and 100 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay females were inhibited by 89, 79, 61, 40 and 30%, respectively, compared to Tuckerton females. These differences in inducibility could not be explained by altered hepatic expression of estrogen receptors α, βa or βb. Based on the caged and dose-response studies, contaminants that down-regulate vitellogenin would interfere with its ability to be used as a biomarker for xeno-estrogen exposures. These studies demonstrate that contaminants within Newark Bay exert both estrogenic and anti-estrogenic responses which results in an overtly anti-estrogenic phenotype (reduced egg production due to inhibition of vitellogenesis).
AB - Aquatic species inhabiting polluted estuaries are exposed to complex mixtures of xenobiotics which can alter normal reproduction. We previously reported that female Atlantic killifish (Fundulus heteroclitus) from the highly contaminated Newark Bay, NJ (USA) exhibited an inhibition of oocyte development due to reduced vitellogenin (egg-yolk precursor) levels. Our hypothesis was that the inhibition of oocyte development in Newark Bay killifish is due to (1) deficient levels of circulating 17β-estradiol, and (2) a decreased sensitivity of the vitellogenin pathway to physiological doses of 17β-estradiol. In the first study, adult naïve killifish from Tuckerton, NJ (reference) were caged at Tuckerton and Newark Bay. After 1 month, males caged at Newark Bay exhibited inductions of hepatic vitellogenin and estrogen receptor α, which were transient and returned to basal levels after 2 months (p≤. 0.05). In the second study, fecundity and 17β-estradiol levels were measured in reproductively active adult females from Tuckerton and Newark Bay. Tuckerton females produced 140 eggs per female and Newark Bay females produced 11 eggs per female. Embryos from Newark Bay had 34% greater mortality and 28% less hatch, relative to Tuckerton. In addition, embryo mass and yolk-volume of Newark Bay embryos compared to Tuckerton embryos was 16% and 25% lower, respectively. Circulating 17β-estradiol levels in Newark Bay females (0.26 ng/mL) were measured to be 8-fold lower than Tuckerton females (2.25 ng/mL). In the third study, adult killifish from both sites were dosed with 17β-estradiol to assess the sensitivity of the vitellogenin pathway. At doses of 0.01, 0.1, 1 and 10 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay males were significantly inhibited by 97, 99, 98 and 44%, respectively, compared to Tuckerton males. At doses of 0.01, 0.1, 1, 10 and 100 ng/g body weight, induction levels of circulating vitellogenin in Newark Bay females were inhibited by 89, 79, 61, 40 and 30%, respectively, compared to Tuckerton females. These differences in inducibility could not be explained by altered hepatic expression of estrogen receptors α, βa or βb. Based on the caged and dose-response studies, contaminants that down-regulate vitellogenin would interfere with its ability to be used as a biomarker for xeno-estrogen exposures. These studies demonstrate that contaminants within Newark Bay exert both estrogenic and anti-estrogenic responses which results in an overtly anti-estrogenic phenotype (reduced egg production due to inhibition of vitellogenesis).
KW - Adaptation
KW - Attenuation
KW - Biomarkers
KW - Dose-response
KW - Endocrine disruption
KW - Fecundity
KW - Fish reproduction
KW - Fundulus heteroclitus
KW - Killifish
KW - Vitellogenin
UR - http://www.scopus.com/inward/record.url?scp=79958851569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79958851569&partnerID=8YFLogxK
U2 - 10.1016/j.aquatox.2011.03.013
DO - 10.1016/j.aquatox.2011.03.013
M3 - Article
C2 - 21684236
AN - SCOPUS:79958851569
SN - 0166-445X
VL - 105
SP - 1
EP - 12
JO - Aquatic Toxicology
JF - Aquatic Toxicology
IS - 1-2
ER -