Deep Learning based NAS Score and Fibrosis Stage Prediction from CT and Pathology Data

Ananya Jana, Hui Qu, Puru Rattan, Carlos D. Minacapelli, Vinod Rustgi, Dimitris Metaxas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Non-Alcoholic Fatty Liver Disease (NAFLD) is becoming increasingly prevalent in the world population. Without diagnosis at the right time, NAFLD can lead to non-alcoholic steatohepatitis (NASH) and subsequent liver damage. The diagnosis and treatment of NAFLD depend on the NAFLD activity score (NAS) and the liver fibrosis stage, which are usually evaluated from liver biopsies by pathologists. In this work, we propose a novel method to automatically predict NAS score and fibrosis stage from CT data that is non-invasive and inexpensive to obtain compared with liver biopsy. We also present a method to combine the information from CT and HE stained pathology data to improve the performance of NAS score and fibrosis stage prediction, when both types of data are available. This is of great value to assist the pathologists in computer-aided diagnosis process. Experiments on a 30-patient dataset illustrate the effectiveness of our method.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE 20th International Conference on Bioinformatics and Bioengineering, BIBE 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages981-986
Number of pages6
ISBN (Electronic)9781728195742
DOIs
StatePublished - Oct 2020
Event20th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2020 - Virtual, Cincinnati, United States
Duration: Oct 26 2020Oct 28 2020

Publication series

NameProceedings - IEEE 20th International Conference on Bioinformatics and Bioengineering, BIBE 2020

Conference

Conference20th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2020
Country/TerritoryUnited States
CityVirtual, Cincinnati
Period10/26/2010/28/20

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Genetics
  • Molecular Biology
  • Artificial Intelligence
  • Computer Science Applications
  • Biomedical Engineering
  • Modeling and Simulation
  • Health Informatics

Keywords

  • Deep learning
  • Liver fibrosis
  • NAFLD activity score

Fingerprint

Dive into the research topics of 'Deep Learning based NAS Score and Fibrosis Stage Prediction from CT and Pathology Data'. Together they form a unique fingerprint.

Cite this