TY - JOUR
T1 - Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation
AU - Sayed, Nazish
AU - Baskaran, Padmamalini
AU - Ma, Xiaolei
AU - Van Den Akker, Focco
AU - Beuve, Annie
PY - 2007/7/24
Y1 - 2007/7/24
N2 - The molecular mechanism of desensitization of soluble guanylyl cyclase (sGC), the NO receptor, has long remained unresolved. Posttranslational modification and redox state have been postulated to affect sGC sensitivity to NO but evidence has been lacking. We now show that sGC can be S-nitrosylated in primary aortic smooth muscle cells by S-nitrosocysteine (CSNO), an S-nitrosylating agent, in human umbilical vein endothelial cells after vascular endothelial growth factor treatment and in isolated aorta after sustained exposure to acetylcholine. Importantly, we show that S-nitrosylation of sGC results in decreased responsiveness to NO characterized by loss of NO-stimulated sGC activity. Desensitization of sGC is concentration- and time-dependent on exposure to CSNO, and sensitivity of sGC to NO can be restored and its S-nitrosylation prevented with cellular increase of thiols. We confirm in vitro with semipurified sGC that S-nitrosylation directly causes desensitization, suggesting that other cellular factors are not required. Two potential S-nitrosylated cysteines in the α- and β-subunits of sGC were identified by MS. Replacement of these cysteines, C243 in α and C122 in β, created mutants that were mostly resistant to desensitization. Structural analysis of the region near β-C122 in the homologous Nostoc H-NOX crystal structure indicates that this residue is in the vicinity of the heme and its S-nitrosylation could dampen NO activation by affecting the positions of key residues interacting with the heme. This study suggests that S-nitrosylation of sGC is a means by which memory of NO exposure is kept in smooth muscle cells and could be a mechanism of NO tolerance.
AB - The molecular mechanism of desensitization of soluble guanylyl cyclase (sGC), the NO receptor, has long remained unresolved. Posttranslational modification and redox state have been postulated to affect sGC sensitivity to NO but evidence has been lacking. We now show that sGC can be S-nitrosylated in primary aortic smooth muscle cells by S-nitrosocysteine (CSNO), an S-nitrosylating agent, in human umbilical vein endothelial cells after vascular endothelial growth factor treatment and in isolated aorta after sustained exposure to acetylcholine. Importantly, we show that S-nitrosylation of sGC results in decreased responsiveness to NO characterized by loss of NO-stimulated sGC activity. Desensitization of sGC is concentration- and time-dependent on exposure to CSNO, and sensitivity of sGC to NO can be restored and its S-nitrosylation prevented with cellular increase of thiols. We confirm in vitro with semipurified sGC that S-nitrosylation directly causes desensitization, suggesting that other cellular factors are not required. Two potential S-nitrosylated cysteines in the α- and β-subunits of sGC were identified by MS. Replacement of these cysteines, C243 in α and C122 in β, created mutants that were mostly resistant to desensitization. Structural analysis of the region near β-C122 in the homologous Nostoc H-NOX crystal structure indicates that this residue is in the vicinity of the heme and its S-nitrosylation could dampen NO activation by affecting the positions of key residues interacting with the heme. This study suggests that S-nitrosylation of sGC is a means by which memory of NO exposure is kept in smooth muscle cells and could be a mechanism of NO tolerance.
KW - Redox
KW - S-nitrosothiols
KW - Tolerance
KW - cGMP
UR - http://www.scopus.com/inward/record.url?scp=34547633523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547633523&partnerID=8YFLogxK
U2 - 10.1073/pnas.0703944104
DO - 10.1073/pnas.0703944104
M3 - Article
C2 - 17636120
AN - SCOPUS:34547633523
SN - 0027-8424
VL - 104
SP - 12312
EP - 12317
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 30
ER -