Design of cooling systems for electronic equipment using both experimental and numerical inputs

Tunc Icoz, Yogesh Jaluria

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper presents a methodology for the design and optimization of the cooling system for electronic equipment. In this approach, inputs from both experimentation and numerical modeling are to be used concurrently to obtain an acceptable or optimal design. The experimental conditions considered are driven by the numerical simulation, and vice versa. Thus, the two approaches are employed in conjunction, rather than separately, as is the case in traditional design methods. Numerical simulation is used to consider different geometries, materials and dimensions, whereas experiments are used for obtaining results for different flow rates and heat inputs, since these can often be varied more easily in experiments than in simulations. Also, transitional and turbulent flows are more accurately and more conveniently investigated experimentally. Thus, by using both the approaches concurrently, the entire design domain is covered, leading to a rapid, convergent, and realistic design process. Two simple configurations of electronic cooling systems are used to demonstrate this approach.

Original languageEnglish (US)
Pages (from-to)205-210
Number of pages6
JournalAmerican Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
Volume374
Issue number2
DOIs
StatePublished - 2003
Event2003 ASME International Mechanical Engineering Congress - Washington, DC., United States
Duration: Nov 15 2003Nov 21 2003

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Design of cooling systems for electronic equipment using both experimental and numerical inputs'. Together they form a unique fingerprint.

Cite this