Design optimization of size and geometry of vortex promoter in a two-dimensional channel

Tunc Icoz, Yogesh Jaluria

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Thermal management of electronic equipment is one of the major technical problems in the development of electronic systems that would meet increasing future demands for speed and reliability. It is necessary to design cooling systems for removing the heat dissipated by the electronic components efficiently and with minimal cost. Vortex promoters have important implications in cooling systems for electronic devices, since these are used to enhance heat transfer from the heating elements. In this paper, an application of dynamic data driven optimization methodology, which employs concurrent use of simulation and experiment, is presented for the design of the vortex promoter to maximize the heat removal rate from multiple protruding heat sources located in a channel, while keeping the pressure drop within reasonable limits. Concurrent use of computer simulation and experiment in real time is shown to be an effective tool for efficient engineering design and optimization. Numerical simulation can effectively be used for low flow rates and low heat inputs. However, with transition to oscillatory and turbulent flows at large values of these quantities, the problem becomes more involved and computational cost increases dramatically. Under these circumstances, experimental systems are used to determine the component temperatures for varying heat input and flow conditions. The design variables are taken as the Reynolds number and the shape and size of the vortex promoter. The problem is a multiobjective design optimization problem, where the objectives are maximizing the total heat transfer rate Q and minimizing the pressure drop ΔP. This multiobjective problem is converted to a single-objective problem by combining the two objective functions in the form of weighted sums.

Original languageEnglish (US)
Pages (from-to)1081-1092
Number of pages12
JournalJournal of Heat Transfer
Volume128
Issue number10
DOIs
StatePublished - Oct 2006

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Design optimization of size and geometry of vortex promoter in a two-dimensional channel'. Together they form a unique fingerprint.

Cite this