TY - JOUR
T1 - Designer synthetic media for studying microbialcatalyzed biofuel production
AU - Tang, Xiaoyu
AU - Sousa, Leonardo Da Costa
AU - Jin, Mingjie
AU - Chundawat, Shishir P.S.
AU - Chambliss, Charles Kevin
AU - Lau, Ming W.
AU - Xiao, Zeyi
AU - Dale, Bruce E.
AU - Balan, Venkatesh
N1 - Funding Information:
We would like to acknowledge Novozymes and Genencor for kindly providing the enzymes used in the production of the lignocellulosic hydrolysate and oligomeric xylan. We thank Professor Nancy Ho from Purdue University for kindly providing the recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain. We would like to acknowledge Professor Dan Jones for making available some of the analytical instrumentation at the MSU mass spectrometry facility for hydrolysate analysis. We also want to thank Charles Donald, Christa Gunawan, and Jeffrey Halim for their assistance in sample preparation and analysis. This work was partially funded by the DOE Great Lakes Bioenergy Research Center (GLBRC), grant number DE‐FC02‐ 07ER64494. Leonardo Sousa was funded by Fundação para a Ciência e a Tecnologia and European Social Fund, grant number SFRH/BD/62517/ 2009. Xiaoyu Tang was supported by the China Scholarship Council, grant number 2009101936.
Publisher Copyright:
©2015 Tang et al.; licensee BioMed Central.
PY - 2015/1/22
Y1 - 2015/1/22
N2 - Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.
AB - Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.
KW - Afex
KW - Amides inhibition
KW - Carboxylic acids inhibition
KW - Hydrolysate composition
KW - Lignocellulose
KW - Pretreatment decomposition products
KW - Synthetic hydrolysate
KW - Yeast fermentation inhibition
UR - http://www.scopus.com/inward/record.url?scp=84924070821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924070821&partnerID=8YFLogxK
U2 - 10.1186/s13068-014-0179-6
DO - 10.1186/s13068-014-0179-6
M3 - Article
AN - SCOPUS:84924070821
SN - 1754-6834
VL - 8
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 0179
ER -