TY - JOUR
T1 - Developmental regulation of RNA transcript destabilization by A + U-rich elements is AUF1-dependent
AU - Buzby, Jeffrey S.
AU - Brewer, Gary
AU - Nugent, Diane J.
PY - 1999/11/26
Y1 - 1999/11/26
N2 - The developmental immaturity of neonatal phagocytic function is associated with decreased accumulation and half-life (t 1/2 ) of granulocyte/macrophage colony-stimulating factor (GM-CSF) mRNA in mononuclear cells (MNC) from the neonatal umbilical cord compared with adult peripheral blood. The in vivo t 1/2 of GM-CSF mRNA is 3-fold shorter in neonatal (30 min) than in adult (100 min) MNC. Turnover of mRNA containing a 3'-untranslated region (3'-UTR) A + U-rich element (ARE), which regulates GM-CSF mRNA stability, is accelerated in vitro by protein fractions enriched for AUF1, an ARE-specific binding factor. The data reported here demonstrate that the ARE significantly accelerates in vitro decay of the GM-CSF 3'-UTR in the presence of either neonatal or adult MNC protein. Decay intermediates of the GM-CSF 3'-UTR are generated that are truncated at either end of the ARE. Furthermore, the t 1/2 of the ARE-containing 3'-UTR is 4-fold shorter in the presence of neonatal (19 min) than adult (79 min) MNC protein, reconstituting developmental regulation in a cell-free system. Finally, accelerated ARE- dependent decay of the GM-CSF 3'-UTR in vitro by neonatal MNC protein is significantly attenuated by immunodepletion of AUF1, providing new evidence that this accelerated turnover is ARE- and AUF1-dependent.
AB - The developmental immaturity of neonatal phagocytic function is associated with decreased accumulation and half-life (t 1/2 ) of granulocyte/macrophage colony-stimulating factor (GM-CSF) mRNA in mononuclear cells (MNC) from the neonatal umbilical cord compared with adult peripheral blood. The in vivo t 1/2 of GM-CSF mRNA is 3-fold shorter in neonatal (30 min) than in adult (100 min) MNC. Turnover of mRNA containing a 3'-untranslated region (3'-UTR) A + U-rich element (ARE), which regulates GM-CSF mRNA stability, is accelerated in vitro by protein fractions enriched for AUF1, an ARE-specific binding factor. The data reported here demonstrate that the ARE significantly accelerates in vitro decay of the GM-CSF 3'-UTR in the presence of either neonatal or adult MNC protein. Decay intermediates of the GM-CSF 3'-UTR are generated that are truncated at either end of the ARE. Furthermore, the t 1/2 of the ARE-containing 3'-UTR is 4-fold shorter in the presence of neonatal (19 min) than adult (79 min) MNC protein, reconstituting developmental regulation in a cell-free system. Finally, accelerated ARE- dependent decay of the GM-CSF 3'-UTR in vitro by neonatal MNC protein is significantly attenuated by immunodepletion of AUF1, providing new evidence that this accelerated turnover is ARE- and AUF1-dependent.
UR - http://www.scopus.com/inward/record.url?scp=0033607534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033607534&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.48.33973
DO - 10.1074/jbc.274.48.33973
M3 - Article
C2 - 10567360
AN - SCOPUS:0033607534
SN - 0021-9258
VL - 274
SP - 33973
EP - 33978
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 48
ER -