TY - JOUR
T1 - Disjoint induced subgraphs of the same order and size
AU - Bollobás, Béla
AU - Kittipassorn, Teeradej
AU - Narayanan, Bhargav P.
AU - Scott, Alexander D.
N1 - Publisher Copyright:
© 2015 Elsevier Ltd.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - For a graph G, let f(. G) be the largest integer k such that there are two vertex-disjoint subgraphs of G each on k vertices, both inducing the same number of edges. We prove that f(. G). ≥. n/2. -. o(. n) for every graph G on n vertices. This answers a question of Caro and Yuster.
AB - For a graph G, let f(. G) be the largest integer k such that there are two vertex-disjoint subgraphs of G each on k vertices, both inducing the same number of edges. We prove that f(. G). ≥. n/2. -. o(. n) for every graph G on n vertices. This answers a question of Caro and Yuster.
UR - http://www.scopus.com/inward/record.url?scp=84926628489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926628489&partnerID=8YFLogxK
U2 - 10.1016/j.ejc.2015.03.005
DO - 10.1016/j.ejc.2015.03.005
M3 - Article
AN - SCOPUS:84926628489
SN - 0195-6698
VL - 49
SP - 153
EP - 166
JO - European Journal of Combinatorics
JF - European Journal of Combinatorics
ER -