TY - GEN
T1 - Distributed primal-dual optimization for online multi-task learning
AU - Yang, Peng
AU - Li, Ping
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Conventional online multi-task learning algorithms suffer from two critical limitations: 1) Heavy communication caused by delivering high velocity of sequential data to a central machine; 2) Expensive runtime complexity for building task relatedness. To address these issues, in this paper we consider a setting where multiple tasks are geographically located in different places, where one task can synchronize data with others to leverage knowledge of related tasks. Specifically, we propose an adaptive primal-dual algorithm, which not only captures task-specific noise in adversarial learning but also carries out a projection-free update with runtime efficiency. Moreover, our model is well-suited to decentralized periodic-connected tasks as it allows the energy-starved or bandwidth-constraint tasks to postpone the update. Theoretical results demonstrate the convergence guarantee of our distributed algorithm with an optimal regret. Empirical results confirm that the proposed model is highly effective on various real-world datasets.
AB - Conventional online multi-task learning algorithms suffer from two critical limitations: 1) Heavy communication caused by delivering high velocity of sequential data to a central machine; 2) Expensive runtime complexity for building task relatedness. To address these issues, in this paper we consider a setting where multiple tasks are geographically located in different places, where one task can synchronize data with others to leverage knowledge of related tasks. Specifically, we propose an adaptive primal-dual algorithm, which not only captures task-specific noise in adversarial learning but also carries out a projection-free update with runtime efficiency. Moreover, our model is well-suited to decentralized periodic-connected tasks as it allows the energy-starved or bandwidth-constraint tasks to postpone the update. Theoretical results demonstrate the convergence guarantee of our distributed algorithm with an optimal regret. Empirical results confirm that the proposed model is highly effective on various real-world datasets.
UR - http://www.scopus.com/inward/record.url?scp=85100239053&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100239053&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100239053
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 6631
EP - 6638
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -