Abstract
Calcium (Ca2+) oscillations in hepatocytes control many critical cellular functions, including glucose metabolism and bile secretion. The mechanisms underlying repetitive Ca2+ oscillations and how these mechanisms regulate these oscillations is not fully understood. Recent experimental evidence has shown that both Ca2+ regulation of the inositol 1,4,5-trisphosphate (IP3) receptor and IP3 metabolism generate Ca2+ oscillations and co-exist in hepatocytes. To investigate the effects of these feedback mechanisms on the Ca2+ response, we construct a mathematical model of the Ca2+ signalling network in hepatocytes. The model accounts for the biphasic regulation of Ca2+ on the IP3 receptor (IP3R) and the positive feedback from Ca2+ on IP3 metabolism, via activation of phospholipase C (PLC) by agonist and Ca2+. Model simulations show that Ca2+ oscillations exist for both constant [IP3] and for [IP3] changing dynamically. We show, both experimentally and in the model, that as agonist concentration increases, Ca2+ oscillations transition between simple narrow-spike oscillations and complex broad-spike oscillations. The model predicts that narrow-spike oscillations persist when Ca2+ transport across the plasma membrane is blocked. This prediction has been experimentally validated. In contrast, broad-spike oscillations are terminated when plasma membrane transport is blocked. We conclude that multiple feedback mechanisms participate in regulating Ca2+ oscillations in hepatocytes.
Original language | English (US) |
---|---|
Article number | 110390 |
Journal | Journal of Theoretical Biology |
Volume | 503 |
DOIs | |
State | Published - Oct 21 2020 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics
Keywords
- IP
- IP receptors
- Models of calcium oscillations
- Signal transduction