TY - JOUR
T1 - Dual regulation of TRPV1 channels by phosphatidylinositol via functionally distinct binding sites
AU - Yazici, Aysenur Torun
AU - Gianti, Eleonora
AU - Kasimova, Marina A.
AU - Lee, Bo Hyun
AU - Carnevale, Vincenzo
AU - Rohacs, Tibor
N1 - Funding Information:
Acknowledgments—The TRPV1-GFP construct was a kind gift from Dr Xavier Garcia-Sancho (Universidad de Valladolid, Spain). This research includes calculations carried out on Temple University’s HPC resources and thus was supported in part by the National Science Foundation through major research instrumentation grant number 1625061 and by the US Army Research Laboratory under contract number W911NF-16-2-0189 as well as National Institutes of Health Grant S10OD020095.
Funding Information:
Funding and additional information—This work was supported by the National Institutes of Health Grants NS055159 (to T. R.), and National Science Foundation Grant ACI-1614804 (V.C.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2021 THE AUTHORS.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channel by phosphoinositides is complex and controversial. In the most recent TRPV1 cryo-EM structure, endogenous phosphatidylinositol (PtdIns) was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] being a wellestablished positive regulator of TRPV1. Here we show that in the presence of PtdIns(4,5)P2 in excised patches, PtdIns, but not PtdIns(4)P, partially inhibited TRPV1 activity at low, but not at high capsaicin concentrations. This is consistent with PtdIns acting as a competitive vanilloid antagonist. However, in the absence of PtdIns(4,5)P2, PtdIns partially stimulated TRPV1 activity. We computationally identified residues, which are in contact with PtdIns, but not with capsaicin in the vanilloid binding site. The I703A mutant of TRPV1 showed increased sensitivity to capsaicin, as expected when removing the effect of an endogenous competitive antagonist. I703A was not inhibited by PtdIns in the presence of PtdIns(4,5)P2, but it was still activated by PtdIns in the absence of PtdIns(4,5)P2 indicating that inhibition, but not activation by PtdIns proceeds via the vanilloid binding site. In molecular dynamics simulations, PtdIns was more stable than PtdIns(4,5)P2 in this inhibitory site, whereas PtdIns(4,5)P2 was more stable than PtdIns in a previously identified, nonoverlapping, putative activating binding site. Our data indicate that phosphoinositides regulate channel activity via functionally distinct binding sites, which may explain some of the complexities of the effects of these lipids on TRPV1.
AB - Regulation of the heat- and capsaicin-activated transient receptor potential vanilloid 1 (TRPV1) channel by phosphoinositides is complex and controversial. In the most recent TRPV1 cryo-EM structure, endogenous phosphatidylinositol (PtdIns) was detected in the vanilloid binding site, and phosphoinositides were proposed to act as competitive vanilloid antagonists. This model is difficult to reconcile with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] being a wellestablished positive regulator of TRPV1. Here we show that in the presence of PtdIns(4,5)P2 in excised patches, PtdIns, but not PtdIns(4)P, partially inhibited TRPV1 activity at low, but not at high capsaicin concentrations. This is consistent with PtdIns acting as a competitive vanilloid antagonist. However, in the absence of PtdIns(4,5)P2, PtdIns partially stimulated TRPV1 activity. We computationally identified residues, which are in contact with PtdIns, but not with capsaicin in the vanilloid binding site. The I703A mutant of TRPV1 showed increased sensitivity to capsaicin, as expected when removing the effect of an endogenous competitive antagonist. I703A was not inhibited by PtdIns in the presence of PtdIns(4,5)P2, but it was still activated by PtdIns in the absence of PtdIns(4,5)P2 indicating that inhibition, but not activation by PtdIns proceeds via the vanilloid binding site. In molecular dynamics simulations, PtdIns was more stable than PtdIns(4,5)P2 in this inhibitory site, whereas PtdIns(4,5)P2 was more stable than PtdIns in a previously identified, nonoverlapping, putative activating binding site. Our data indicate that phosphoinositides regulate channel activity via functionally distinct binding sites, which may explain some of the complexities of the effects of these lipids on TRPV1.
UR - http://www.scopus.com/inward/record.url?scp=85104628382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104628382&partnerID=8YFLogxK
U2 - 10.1016/j.jbc.2021.100573
DO - 10.1016/j.jbc.2021.100573
M3 - Article
C2 - 33766560
AN - SCOPUS:85104628382
SN - 0021-9258
VL - 296
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
M1 - A98
ER -