Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1

Xin Xiang, Gongshe Han, Donald A. Winkelmann, Wenqi Zuo, N. Ronald Morris

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Cytoplasmic dynein is a minus-end-directed microtubule motor that participates in multiple cellular activities such as organelle transport and mitotic spindle assembly [1]. To study the dynamic behavior of cytoplasmic dynein in the filamentous fungus Aspergillus nidulans, we replaced the gene for the cytoplasmic dynein heavy chain, nudA, with a gene encoding a green fluorescent protein (GFP)-tagged chimera, GFP-nudA. The GFP-NUDA fusion protein is fully functional in vivo: strains expressing only the GFP-tagged nudA grow as well as wild-type strains. Fluorescence microscopy showed GFP-NUDA to be in comet-like structures that moved in the hyphae toward the growing tip. Retrograde movement of some GFP-NUDA comets after they arrived at the tip was also observed. These dynamics of GFP-NGDA were not observed in cells treated with a microtubule-destabilizing drug, benomyl, suggesting they are microtubule-dependent. The rate of GFP-NGDA tip-ward movement is similar to the rate of cytoplasmic microtubule polymerization toward the hyphal tip, suggesting that GFP-NUDA is associated and moving with the polymerizing ends of microtubules. A mutation in actin-related protein Arp1 of the dynactin complex abolishes the presence of these dynamic GFP-NUDA structures near the hyphal tip, suggesting a targeting role of the dynactin complex.

Original languageEnglish (US)
Pages (from-to)603-606
Number of pages4
JournalCurrent Biology
Volume10
Issue number10
DOIs
StatePublished - May 1 2000

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1'. Together they form a unique fingerprint.

Cite this