Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation

Konstantin Mischaikow, Yoshihisa Morita

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The dynamics on the attractor for the complex Ginzburg-Landau equation ut=v(1+iκ)uxx+u-(1+iμ)|u|2u for parameter values μ≈κ is described via a semiconjugacy onto a simple ordinary differential equation difined on the unit disk in R2 K

Original languageEnglish (US)
Pages (from-to)185-202
Number of pages18
JournalJapan Journal of Industrial and Applied Mathematics
Volume11
Issue number2
DOIs
StatePublished - Jun 1994
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Applied Mathematics

Keywords

  • Ginzburg-Landau equation
  • Morse decomposition
  • global attractor
  • model flow

Fingerprint

Dive into the research topics of 'Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation'. Together they form a unique fingerprint.

Cite this