TY - JOUR
T1 - E-cigarette vaping associated acute lung injury (EVALI)
T2 - state of science and future research needs
AU - Marrocco, Antonella
AU - Singh, Dilpreet
AU - Christiani, David C.
AU - Demokritou, Philip
N1 - Publisher Copyright:
© 2022 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - “E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury” (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients’ e-cigs and biological samples. Lacking standardized methodologies for patients’ data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.
AB - “E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury” (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients’ e-cigs and biological samples. Lacking standardized methodologies for patients’ data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.
KW - EVALI
KW - acute lung injury
KW - acute respiratory distress syndrome (ARDS)
KW - counterfeit cartridges
KW - e-cigarettes
KW - pneumonia
KW - vaping
KW - vitamin E acetate (VEA)
KW - Δ-9-tetrahydrocannabinol (THC)
UR - http://www.scopus.com/inward/record.url?scp=85134033347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134033347&partnerID=8YFLogxK
U2 - 10.1080/10408444.2022.2082918
DO - 10.1080/10408444.2022.2082918
M3 - Review article
C2 - 35822508
AN - SCOPUS:85134033347
SN - 1040-8444
VL - 52
SP - 188
EP - 220
JO - Critical Reviews in Toxicology
JF - Critical Reviews in Toxicology
IS - 3
ER -