Effect of incremental depth and part shape on failure modes in single point incremental forming of polymers

Mohammad Ali Davarpanah, Rajiv Malhotra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Single Point Incremental Forming (SPIF) has received considerable attention recently due to advantages such as partshape-independent tooling, higher formability and higher process flexibility as compared to conventional forming. While significant research has been performed on SPIF of metals, recent work has also shown the feasibility of using SPIF for cold-forming of thermoplastic polymer sheets. However, the effects of incremental depth and part shape on the modes of failure during polymer SPIF have rarely been investigated. This paper examines the effects of part shape and incremental depth on the formability and failure modes in polymer SPIF. It is shown that greater incremental depths result in greater formability in polymer SPIF. Furthermore, it is shown that increasing the rate of change of the wall angle with the Z depth of the part increases the maximum formability achievable using a given incremental depth. At the same time, it is observed that this dual advantage of greater formability and reduced forming time, possible with higher incremental depths, is limited by the occurrence of sheet wrinkling when the incremental depth becomes too high. Additionally, the dependence of sheet wrinkling on the overall shape of the part being formed is also shown.

Original languageEnglish (US)
Title of host publicationProcessing
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856826
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015 - Charlotte, United States
Duration: Jun 8 2015Jun 12 2015

Publication series

NameASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Volume1

Other

OtherASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
CountryUnited States
CityCharlotte
Period6/8/156/12/15

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Effect of incremental depth and part shape on failure modes in single point incremental forming of polymers'. Together they form a unique fingerprint.

Cite this