Abstract
The co-existence of polysaccharides and enzymes in the food matrix could form complexes that directly influence the catalytic efficacy of enzymes. This work investigated the self-assembly behaviors of α-amylase and charged polysaccharides and fabricated the α-amylase/polysaccharides complex coacervates. The results showed that the linear charge density of polysaccharides had a critical impact on the complex formation, structure, and enzyme protection under acidic conditions. At low pH, α-amylase formed compact and tight coacervates with the λ-carrageenan. However, α-amylase/pectin coacervates dissociated when the pH was lower than 3.0. The optimized binding ratio of α-amylase/λ-carrageenan was 12:1, and α-amylase/pectin was 4:1. Finally, the α-amylase/λ-carrageenan complex coacervates effectively immobilized the enzyme and almost 70% of enzyme activity remained in coacervates after exposure to pH3.0 for 1 h. This study demonstrates that the change in the linear charge density of polysaccharides could regulate the enzyme-catalyzed process in food processing by a simple and fine-controlled method.
Original language | English (US) |
---|---|
Article number | 127320 |
Journal | Food Chemistry |
Volume | 331 |
DOIs | |
State | Published - Nov 30 2020 |
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Food Science
Keywords
- Complexes coacervation
- Enzyme immobilization
- Pectin
- Self-assembly
- α-Amylase
- λ-Carrageenan