Effect of metal oxide nanoparticles on the mechanical properties and tacticity of poly(methyl methacrylate)

Wantinee Viratyaporn, Richard Lehman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Nanoparticles were incorporated into poly(methyl methacrylate) matrix by the mean of in situ bulk polymerization. Particle chemistry, size, shape, and percent loading were experimental variables in the synthesis and mechanical properties were assessed, particularly impact resistance, which showed improvement at the optimal particle loading. In assessing the mechanisms of this improvement, the elongated shape of zinc oxide particles appears to promote crack deflection processes to introduce a pull-out mechanism similar to that observed in fiber composite systems. Raman spectroscopy was performed to examine the effect of polymer chain conformation and configuration with the addition of nanoparticles.

Original languageEnglish (US)
Title of host publicationZinc Oxide and Related Materials - 2009
Pages109-114
Number of pages6
StatePublished - 2010
Event2009 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 30 2009Dec 4 2009

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1201
ISSN (Print)0272-9172

Other

Other2009 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period11/30/0912/4/09

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effect of metal oxide nanoparticles on the mechanical properties and tacticity of poly(methyl methacrylate)'. Together they form a unique fingerprint.

Cite this