Effect of particle shape on neck growth and shrinkage of nanoparticles

Elham Mirkoohi, Rajiv Malhotra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Sintering of nanoparticles to create films and patterns of functional materials is emerging as a key manufacturing process in applications like flexible electronics, solar cells and thin-film devices. Further, there is the emerging potential to use nanoparticle sintering to perform additive manufacturing as well. While the effect of nanoparticle size on sintering has been well studied, very little attention has been paid to the effect of nanoparticle shape on the evolution of sintering. This paper uses Molecular dynamics (MD) simulations to determine the influence of particle shape on shrinkage and neck growth for two common nanoparticle shape combinations, i.e., sphere-sphere and sphere-cylinder nanoparticles of different sizes. These sintering indicators are examined at two different temperature ramps. The results from this work show that depending on their relative sizes, degree of neck growth and shrinkage are both significantly affected by the nanoparticle shape. The possibility of using this phenomenon to control density and stresses during nanoparticle sintering are discussed.

Original languageEnglish (US)
Title of host publicationAdditive Manufacturing; Materials
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850732
DOIs
StatePublished - 2017
Externally publishedYes
EventASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing - Los Angeles, United States
Duration: Jun 4 2017Jun 8 2017

Publication series

NameASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Volume2

Other

OtherASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Country/TerritoryUnited States
CityLos Angeles
Period6/4/176/8/17

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Effect of particle shape on neck growth and shrinkage of nanoparticles'. Together they form a unique fingerprint.

Cite this