Effective flange width for composite steel beams

T. Salama, H. H. Nassif

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


The effective flange width is a concept proposed by various codes to simplify the computation of stress distribution across the width of composite beams. Questions have been raised as to the validity of the effective slab width provisions, since they have a direct effect on the computed ultimate moment as well as serviceability limit states such as deflection, fatigue, and overloading. The objective of this paper is to present results from an experimental and analytical investigation to determine the effective slab width in steel composite beams. The Finite Element Method (FEM) was employed for the analysis of composite steel-concrete beams having variable concrete flange widths. Results were compared to those from tests performed on eight beams loaded to failure. Beam test specimens had variable flange width and various degrees of composite action (shear connectors). The comparison presented in terms of the applied load versus deflection, and strain in the concrete slab show that the AISC-LRFD code is conservative and underestimates the width active. Based on a detailed parametric study an equation for the calculation of the effective flange width is recommended.

Original languageEnglish (US)
Pages (from-to)28-43
Number of pages16
JournalJournal of Engineering Research
Issue number1
StatePublished - 2011

All Science Journal Classification (ASJC) codes

  • Engineering(all)


  • Composite steel beams
  • Effective flange width
  • Finite element analysis


Dive into the research topics of 'Effective flange width for composite steel beams'. Together they form a unique fingerprint.

Cite this