Effects of citrus flavonoids, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone, on the activities of macrophage scavenger receptors and the hepatic LDL receptor

Mei Chun Kou, Shih Hang Fu, Jui Hung Yen, Ching Yi Weng, Shiming Li, Chi Tang Ho, Ming Jiuan Wu

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Epidemiological and animal studies point to a possible protective effect of citrus flavonoids against cardiovascular diseases. The aim of this study is to investigate the effects of citrus flavonoids, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF) and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HpMF), on the activities and expressions of macrophage scavenger receptors and the hepatic LDL receptor. Treatment of HpMF (20 μM) during THP-1 differentiation successfully attenuated 12-myristate 13-acetate (PMA)-mediated DiI-labeled oxidized low-density lipoprotein (oxLDL) uptake as evidenced by flow cytometry, indicating that the functions of scavenger receptors were blocked. RT-Q-PCR analysis suggests that the decrease in oxLDL uptake was due to the down-regulation of PMA-induced SR-A mRNA expression. In terminally differentiated THP-1 macrophages, 5-OH-HxMF and HpMF could significantly reduce DiI-oxLDL uptake, with the former having a greater effect. 5-OH-HxMF attenuated oxLDL-mediated CD36 and SR-A expression; while HpMF only decreased CD36 expression. The effects of these two flavonoids on the activity and expression of the hepatic LDL receptor (LDLR) were further investigated in HepG2 cells. 5-OH-HxMF (10–20 μM) enhanced DiI-LDL uptake by 1.33-fold due to the enhanced LDLR expression. These results imply that HpMF is better at inhibiting PMA-induced oxLDL uptake during THP-1 differentiation, while 5-OH-HxMF is more powerful in attenuating oxLDL-induced scavenger receptor expression and activity in terminally differentiated THP-1 macrophages. Furthermore, 5-OH-HxMF may have hypolipidemic activity due to its up-regulating hepatic LDLR expression.

Original languageEnglish (US)
Pages (from-to)602-609
Number of pages8
JournalFood and Function
Volume4
Issue number4
DOIs
StatePublished - Mar 25 2013

All Science Journal Classification (ASJC) codes

  • Food Science

Fingerprint

Dive into the research topics of 'Effects of citrus flavonoids, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone, on the activities of macrophage scavenger receptors and the hepatic LDL receptor'. Together they form a unique fingerprint.

Cite this