TY - JOUR
T1 - Effects of Trinexapac-ethyl on drought responses in creeping bentgrass associated with water use and osmotic adjustment
AU - Bian, Xiuju
AU - Merewitz, Emily
AU - Huang, Bingru
PY - 2009/9
Y1 - 2009/9
N2 - Understanding factors influencing drought resistance traits is important for improving turfgrass growth in water-limited environments. The objectives of this study were to examine effects of a plant growth regulator, trinexapac-ethyl (TE), on turf growth and water use for creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to determine changes in the accumulation of solutes involved in osmotic adjustment associated with TE application. Plant foliage of cultivar L-93 was sprayed with 1.95 mL L-1 of TE at 0.113% a.i. 14 days before and at the initiation of drought stress. TE-treated and untreated plants were exposed to well-watered or drought stress conditions for 28 days in a growth chamber. TE-treated plants exhibited a reduced rate of water depletion from the soil as demonstrated by higher soil water content, lower evapotranspiration rates, and higher leaf relative water content during 28 days of drought stress compared with non-TE-treated plants. During the later phase of drought stress, TE-treated plants had a greater reduction in leaf ΨS at full turgor or greater osmotic adjustment, which was associated with increased accumulation of soluble sugars and inorganic ions (Ca and K) in leaves of TE-treated plants. Proline content increased in response to drought stress, but was unaffected by TE application, suggesting that it may not contribute to the effects of TE on osmotic adjustment. TE-treated plants maintained significantly higher turf quality and leaf photochemical efficiency under drought stress. The results suggest that the promotive effects of TE application on turf growth during drought stress were associated with the reduction in water depletion or lower water use and increases in osmotic adjustment due to the accumulation of inorganic solutes and soluble sugars.
AB - Understanding factors influencing drought resistance traits is important for improving turfgrass growth in water-limited environments. The objectives of this study were to examine effects of a plant growth regulator, trinexapac-ethyl (TE), on turf growth and water use for creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to determine changes in the accumulation of solutes involved in osmotic adjustment associated with TE application. Plant foliage of cultivar L-93 was sprayed with 1.95 mL L-1 of TE at 0.113% a.i. 14 days before and at the initiation of drought stress. TE-treated and untreated plants were exposed to well-watered or drought stress conditions for 28 days in a growth chamber. TE-treated plants exhibited a reduced rate of water depletion from the soil as demonstrated by higher soil water content, lower evapotranspiration rates, and higher leaf relative water content during 28 days of drought stress compared with non-TE-treated plants. During the later phase of drought stress, TE-treated plants had a greater reduction in leaf ΨS at full turgor or greater osmotic adjustment, which was associated with increased accumulation of soluble sugars and inorganic ions (Ca and K) in leaves of TE-treated plants. Proline content increased in response to drought stress, but was unaffected by TE application, suggesting that it may not contribute to the effects of TE on osmotic adjustment. TE-treated plants maintained significantly higher turf quality and leaf photochemical efficiency under drought stress. The results suggest that the promotive effects of TE application on turf growth during drought stress were associated with the reduction in water depletion or lower water use and increases in osmotic adjustment due to the accumulation of inorganic solutes and soluble sugars.
KW - Agrostis stolonifera
KW - Growth regulator
KW - Solutes
KW - Stress tolerance
UR - http://www.scopus.com/inward/record.url?scp=70450183504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70450183504&partnerID=8YFLogxK
U2 - 10.21273/jashs.134.5.505
DO - 10.21273/jashs.134.5.505
M3 - Article
AN - SCOPUS:70450183504
SN - 0003-1062
VL - 134
SP - 505
EP - 510
JO - Journal of the American Society for Horticultural Science
JF - Journal of the American Society for Horticultural Science
IS - 5
ER -