Efficient Dynamic Constraints for Animating Articulated Figures

Evangelos Kokkevis, Dimitri Metaxas

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

This paper presents an efficient dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A non-trivial extension of Featherstone's O(n) recursive forward dynamics algorithm is derived which allows enforcing one or more constraints on the animated figures. We demonstrate how the constraint force evaluation algorithm we have developed makes it possible to simulate collisions between articulated figures, to compute the results of impulsive forces, to enforce joint limits, to model closed kinematic loops, and to robustly control motion at interactive rates. Particular care has been taken to make the algorithm not only fast, but also easy to implement and use. To better illustrate how the constraint force evaluation algorithm works, we provide pseudocode for its major components. Additionally, we analyze its computational complexity and finally we present examples demonstrating how our system has been used to generate interactive, physically correct complex motion with small user effort.

Original languageEnglish (US)
Pages (from-to)89-114
Number of pages26
JournalMultibody System Dynamics
Volume2
Issue number2
DOIs
StatePublished - Jan 1 1998
Externally publishedYes

Fingerprint

Figure
Computer Animation
Dynamic Algorithms
Motion
Motion Control
Evaluation
Kinematics
Computational Complexity
Motion control
Collision
Animation
Computational complexity
Closed
Demonstrate
Model

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Aerospace Engineering
  • Mechanical Engineering
  • Computer Science Applications
  • Control and Optimization

Cite this

@article{21db8dd2aac54d7e8abccbd210537e89,
title = "Efficient Dynamic Constraints for Animating Articulated Figures",
abstract = "This paper presents an efficient dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A non-trivial extension of Featherstone's O(n) recursive forward dynamics algorithm is derived which allows enforcing one or more constraints on the animated figures. We demonstrate how the constraint force evaluation algorithm we have developed makes it possible to simulate collisions between articulated figures, to compute the results of impulsive forces, to enforce joint limits, to model closed kinematic loops, and to robustly control motion at interactive rates. Particular care has been taken to make the algorithm not only fast, but also easy to implement and use. To better illustrate how the constraint force evaluation algorithm works, we provide pseudocode for its major components. Additionally, we analyze its computational complexity and finally we present examples demonstrating how our system has been used to generate interactive, physically correct complex motion with small user effort.",
author = "Evangelos Kokkevis and Dimitri Metaxas",
year = "1998",
month = "1",
day = "1",
doi = "10.1023/A:1009778128601",
language = "English (US)",
volume = "2",
pages = "89--114",
journal = "Multibody System Dynamics",
issn = "1384-5640",
publisher = "Springer Netherlands",
number = "2",

}

Efficient Dynamic Constraints for Animating Articulated Figures. / Kokkevis, Evangelos; Metaxas, Dimitri.

In: Multibody System Dynamics, Vol. 2, No. 2, 01.01.1998, p. 89-114.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Efficient Dynamic Constraints for Animating Articulated Figures

AU - Kokkevis, Evangelos

AU - Metaxas, Dimitri

PY - 1998/1/1

Y1 - 1998/1/1

N2 - This paper presents an efficient dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A non-trivial extension of Featherstone's O(n) recursive forward dynamics algorithm is derived which allows enforcing one or more constraints on the animated figures. We demonstrate how the constraint force evaluation algorithm we have developed makes it possible to simulate collisions between articulated figures, to compute the results of impulsive forces, to enforce joint limits, to model closed kinematic loops, and to robustly control motion at interactive rates. Particular care has been taken to make the algorithm not only fast, but also easy to implement and use. To better illustrate how the constraint force evaluation algorithm works, we provide pseudocode for its major components. Additionally, we analyze its computational complexity and finally we present examples demonstrating how our system has been used to generate interactive, physically correct complex motion with small user effort.

AB - This paper presents an efficient dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A non-trivial extension of Featherstone's O(n) recursive forward dynamics algorithm is derived which allows enforcing one or more constraints on the animated figures. We demonstrate how the constraint force evaluation algorithm we have developed makes it possible to simulate collisions between articulated figures, to compute the results of impulsive forces, to enforce joint limits, to model closed kinematic loops, and to robustly control motion at interactive rates. Particular care has been taken to make the algorithm not only fast, but also easy to implement and use. To better illustrate how the constraint force evaluation algorithm works, we provide pseudocode for its major components. Additionally, we analyze its computational complexity and finally we present examples demonstrating how our system has been used to generate interactive, physically correct complex motion with small user effort.

UR - http://www.scopus.com/inward/record.url?scp=0032094653&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032094653&partnerID=8YFLogxK

U2 - 10.1023/A:1009778128601

DO - 10.1023/A:1009778128601

M3 - Article

VL - 2

SP - 89

EP - 114

JO - Multibody System Dynamics

JF - Multibody System Dynamics

SN - 1384-5640

IS - 2

ER -