Efficient Heterogeneous Collaborative Filtering without negative sampling for recommendation

Chong Chen, Min Zhang, Yongfeng Zhang, Weizhi Ma, Yiqun Liu, Shaoping Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages19-26
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Externally publishedYes
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Efficient Heterogeneous Collaborative Filtering without negative sampling for recommendation'. Together they form a unique fingerprint.

Cite this