Electrical anisotropy and coexistence of structural transitions and superconductivity in IrT e2

Guixin Cao, Weiwei Xie, W. Adam Phelan, J. F. Ditusa, Rongying Jin

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


We report experimental investigations of the electrical transport, magnetic, and thermodynamic properties of IrTe2 single crystals. The resistivity, magnetization, and specific heat display anomalies at TS1≈283K,TS2≈167K, and Tc≈2.5K, corresponding to two structural and one superconducting phase transitions, respectively, demonstrating the coexistence of all of these transitions in high-quality stoichiometric samples. While there is little magnetic anisotropy, a large ab-plane (ρab) and c-axis (ρc) electrical resistivity ratio (ρc/ρab≈730 at T=4K) is observed. This two-dimensional (2D) electronic character is further reflected in the disparate temperature dependences of ρab and ρc, with ρab exhibiting a Fermi-liquid-like T2 dependence below ∼25K, while ρc deviates significantly from this standard metallic behavior. In contrast, the magnetization is almost isotropic and negative over a wide temperature range. This can be explained by larger diamagnetism induced by electronic structure reconstruction as probed by the Hall effect and smaller positive contribution from itinerant electrons due to a low density of states (DOS) at the Fermi level. A small electronic specific heat coefficient with γ≈1.8mJ/molK2 confirms this assertion. This implies that IrTe2 is a weakly coupled superconductor. The connection between the superconductivity and the two structural transitions is discussed.

Original languageEnglish (US)
Article number035148
JournalPhysical Review B
Issue number3
StatePublished - Jan 27 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Electrical anisotropy and coexistence of structural transitions and superconductivity in IrT e2'. Together they form a unique fingerprint.

Cite this