Electroactive, multi-component scaffolds for skeletal muscle regeneration

K. D. McKeon-Fischer, D. H. Flagg, J. H. Rossmeisl, A. R. Whittington, J. W. Freeman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

After loss of skeletal muscle function due to traumatic injuries, muscle healing may result in scar tissue formation and reduced function. A restoration method is needed to create a bioartificial muscle that supports cell growth. An electroactive, coaxial electrospun scaffold was created using PCL, MWCNT, and a PAA/PVA hydrogel. This scaffold was conductive and displayed an actuation response when electrically stimulated. Rat primary skeletal muscle cells were biocompatible with the scaffold and displayed multi-nucleated constructs with actin interaction. MWCNT toxicity was tested using a single exposure method on rat primary skeletal muscle cells. A decrease in cellular activity was found on day 14, but a recovering trend was observed on days 21 and 28. Scaffolds were implanted in the quadriceps muscle of rats for in vivo biocompatibility investigation. Muscle cells were found to have attached and infiltrated the PCL-MWCNT-PAA/PVA scaffolds over the 28 day period. Further development of this scaffold would lead to a viable option for a bioartificial muscle as it is biocompatible and may provide some functional movement to the patient.

Original languageEnglish (US)
Title of host publicationASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013
DOIs
StatePublished - 2013
EventASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013 - Boston, MA, United States
Duration: Feb 4 2013Feb 6 2013

Publication series

NameASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013

Other

OtherASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB 2013
Country/TerritoryUnited States
CityBoston, MA
Period2/4/132/6/13

All Science Journal Classification (ASJC) codes

  • Biotechnology

Fingerprint

Dive into the research topics of 'Electroactive, multi-component scaffolds for skeletal muscle regeneration'. Together they form a unique fingerprint.

Cite this