Electromechanical properties of PMN-PT thin films prepared by pulsed laser deposition technique

A. Kholkin, C. Tantigate, A. Safari

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Ferroelectric relaxor thin films of the composition 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMN-PT) were fabricated by pulsed laser deposition technique on Pt/Ti/SiO2/Si(100) substrates using a La0.5Sr0.5CoO3 film as a template layer. The films were polycrystalline with random orientation of the grains. Electromechanical properties of the films were evaluated by a sensitive interferometric technique as a function of the dc and ac electric fields and frequency. Experimental results show that the effective piezoelectric coefficient d33 can be tuned over a wide range of magnitudes by varying dc bias fields. A small hysteresis and a low remanent d33 ere observed, which favor the use of PMN-PT films in electric field-controlled micromechanical devices. The maximum d33 ranged from 50 to 100 pm/V, depending on the thickness of the films and frequency. The piezoelectric properties are explained based on the expression for the electrostriction biased by polarization. At low electric field, strain is proportional to the square of electric field, while at higher fields it can be better described as the polarization squared. The asymmetry of the strain response in PMN-PT films is attributed to the polarization offset appearing due to the different electrode materials.

Original languageEnglish (US)
Pages (from-to)515-523
Number of pages9
JournalIntegrated Ferroelectrics
Volume22
Issue number1-4
DOIs
StatePublished - 1998

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Control and Systems Engineering
  • Ceramics and Composites
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Keywords

  • Actuators
  • Electrostriction
  • Piezoelectricity
  • Pulsed laser deposition
  • Relaxors

Fingerprint

Dive into the research topics of 'Electromechanical properties of PMN-PT thin films prepared by pulsed laser deposition technique'. Together they form a unique fingerprint.

Cite this