End-to-end deep reinforcement learning based coreference resolution

Hongliang Fei, Xu Li, Dingcheng Li, Ping Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Recent neural network models have significantly advanced the task of coreference resolution. However, current neural coreference models are typically trained with heuristic loss functions that are computed over a sequence of local decisions. In this paper, we introduce an end-to-end reinforcement learning based coreference resolution model to directly optimize coreference evaluation metrics. Specifically, we modify the state-of-the-art higher-order mention ranking approach in Lee et al. (2018) to a reinforced policy gradient model by incorporating the reward associated with a sequence of coreference linking actions. Furthermore, we introduce maximum entropy regularization for adequate exploration to prevent the model from prematurely converging to a bad local optimum. Our proposed model achieves new state-of-the-art performance on the English OntoNotes v5.0 benchmark.

Original languageEnglish (US)
Title of host publicationACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages660-665
Number of pages6
ISBN (Electronic)9781950737482
StatePublished - 2020
Externally publishedYes
Event57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 - Florence, Italy
Duration: Jul 28 2019Aug 2 2019

Publication series

NameACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference57th Annual Meeting of the Association for Computational Linguistics, ACL 2019
Country/TerritoryItaly
CityFlorence
Period7/28/198/2/19

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science(all)
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'End-to-end deep reinforcement learning based coreference resolution'. Together they form a unique fingerprint.

Cite this