TY - GEN
T1 - Energy transfer and molecule-radiation interaction in optical microcavities
AU - Quan, Haiyong
AU - Guo, Zhixiong
PY - 2006
Y1 - 2006
N2 - Laser energy transfer and molecule-radiation interaction in optical microcavity devices are characterized. The device is operated at whispering-gallery modes, and consists of a microcavity and a micro-waveguide coupled by a sub-micrometer air-gap. Emphases are placed on the influences of microcavity size and waveguide compatibility on the energy transfer and storage capability, on the interactions of foreign molecules with the evanescent radiation field surrounding a resonant microcavity. An optimal gap is found for the considered device configuration where maximum energy storage is achieved. This optimal gap is dependent on the resonance mode as well as the morphology. The Q factor increases exponentially with increasing gap and saturates as the gap approaches the optical wavelength. The influence of molecules attachment is demonstrated and the potential in molecular detection is discussed.
AB - Laser energy transfer and molecule-radiation interaction in optical microcavity devices are characterized. The device is operated at whispering-gallery modes, and consists of a microcavity and a micro-waveguide coupled by a sub-micrometer air-gap. Emphases are placed on the influences of microcavity size and waveguide compatibility on the energy transfer and storage capability, on the interactions of foreign molecules with the evanescent radiation field surrounding a resonant microcavity. An optimal gap is found for the considered device configuration where maximum energy storage is achieved. This optimal gap is dependent on the resonance mode as well as the morphology. The Q factor increases exponentially with increasing gap and saturates as the gap approaches the optical wavelength. The influence of molecules attachment is demonstrated and the potential in molecular detection is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84920633049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920633049&partnerID=8YFLogxK
U2 - 10.1115/IMECE2006-14689
DO - 10.1115/IMECE2006-14689
M3 - Conference contribution
AN - SCOPUS:84920633049
SN - 0791837904
SN - 9780791837900
T3 - American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
BT - Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Y2 - 5 November 2006 through 10 November 2006
ER -