TY - JOUR
T1 - Enhanced tetrabromobisphenol A debromination by nanoscale zero valent iron particles sulfidated with S0dissolved in ethanol
AU - Wang, Heli
AU - Zhong, Yin
AU - Zhu, Xifen
AU - Li, Dan
AU - Deng, Yirong
AU - Huang, Weilin
AU - Peng, Ping'An
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2021
Y1 - 2021
N2 - Modification of nanoscale zero-valent iron (nZVI) with reducing sulfur compounds has proven to improve the reactivity of nZVI towards recalcitrant halogenated organic contaminants. In this study, we develop a novel method for the preparation of sulfidated nZVI (S-nZVI) with S0 (a low cost and available reducing sulfur agent) dissolved in ethanol under mild conditions and apply it for the transformation of tetrabromobisphenol A (TBBPA), a potential persistent organic pollutant. Surface analysis shows that S0 dissolved in ethanol has been successfully doped into nZVI via a reaction with Fe0 to form a relatively homogeneous layer of FeS/FeS2 on the nZVI surface. The H2 production test and the electrochemical analysis show that the FeS/FeS2 layer not only slows the H2 evolution reaction but also enhances the electron transfer. Debromination kinetics indicate that the resulting S-nZVI with a S/Fe ratio of 0.015-0.05 possesses higher debromination activity for TBBPA and its debromination products (i.e., tri-BBPA, di-BBPA, mono-BBPA and BPA) in comparison with nZVI. Among them, S-nZVI at a S/Fe of 0.025 (S-nZVIS-0.025) has the greatest debromination rate constant (kobs) of 1.19 ± 0.071 h-1 for TBBPA. It debrominates TBBPA at a faster rate than other conventional S-nZVI made from Na2S and Na2S2O4 and has been successfully applied in the treatment of TBBPA-spiked environmental water samples (including river water, groundwater, and tap water). The results suggest that the modification of nZVI with S0 dissolved in ethanol is a simple, safe, inexpensive, and effective sulfidation technique, which can be applied for the large-scale production of S-nZVI for treating contaminated water.
AB - Modification of nanoscale zero-valent iron (nZVI) with reducing sulfur compounds has proven to improve the reactivity of nZVI towards recalcitrant halogenated organic contaminants. In this study, we develop a novel method for the preparation of sulfidated nZVI (S-nZVI) with S0 (a low cost and available reducing sulfur agent) dissolved in ethanol under mild conditions and apply it for the transformation of tetrabromobisphenol A (TBBPA), a potential persistent organic pollutant. Surface analysis shows that S0 dissolved in ethanol has been successfully doped into nZVI via a reaction with Fe0 to form a relatively homogeneous layer of FeS/FeS2 on the nZVI surface. The H2 production test and the electrochemical analysis show that the FeS/FeS2 layer not only slows the H2 evolution reaction but also enhances the electron transfer. Debromination kinetics indicate that the resulting S-nZVI with a S/Fe ratio of 0.015-0.05 possesses higher debromination activity for TBBPA and its debromination products (i.e., tri-BBPA, di-BBPA, mono-BBPA and BPA) in comparison with nZVI. Among them, S-nZVI at a S/Fe of 0.025 (S-nZVIS-0.025) has the greatest debromination rate constant (kobs) of 1.19 ± 0.071 h-1 for TBBPA. It debrominates TBBPA at a faster rate than other conventional S-nZVI made from Na2S and Na2S2O4 and has been successfully applied in the treatment of TBBPA-spiked environmental water samples (including river water, groundwater, and tap water). The results suggest that the modification of nZVI with S0 dissolved in ethanol is a simple, safe, inexpensive, and effective sulfidation technique, which can be applied for the large-scale production of S-nZVI for treating contaminated water.
UR - http://www.scopus.com/inward/record.url?scp=85100969209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100969209&partnerID=8YFLogxK
U2 - 10.1039/d0em00375a
DO - 10.1039/d0em00375a
M3 - Article
C2 - 33146188
AN - SCOPUS:85100969209
SN - 2050-7887
VL - 23
SP - 86
EP - 97
JO - Environmental Science: Processes and Impacts
JF - Environmental Science: Processes and Impacts
IS - 1
ER -