Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models

Sean Ekins, Robert C. Reynolds, Scott G. Franzblau, Baojie Wan, Joel S. Freundlich, Barry A. Bunin

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

High-throughput screening (HTS) in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb) for further development towards new tuberculosis (TB) drugs. Hit rates from these screens, usually conducted at 10 to 25 μM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.

Original languageEnglish (US)
Article numbere63240
JournalPloS one
Volume8
Issue number5
DOIs
StatePublished - May 7 2013

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models'. Together they form a unique fingerprint.

Cite this