TY - JOUR
T1 - Evaluation of a rapid molecular drug-susceptibility test for tuberculosis
AU - Xie, Yingda L.
AU - Chakravorty, Soumitesh
AU - Armstrong, Derek T.
AU - Hall, Sandra L.
AU - Via, Laura E.
AU - Song, Taeksun
AU - Yuan, Xing
AU - Mo, Xiaoying
AU - Zhu, Hong
AU - Xu, Peng
AU - Gao, Qian
AU - Lee, Myungsun
AU - Lee, Jongseok
AU - Smith, Laura E.
AU - Chen, Ray Y.
AU - Joh, Joon Sung
AU - Cho, Young Soo
AU - Liu, Xin
AU - Ruan, Xianglin
AU - Liang, Lili
AU - Dharan, Nila
AU - Cho, Sang Nae
AU - Barry, Clifton E.
AU - Ellner, Jerrold J.
AU - Dorman, Susan E.
AU - Alland, David
N1 - Funding Information:
This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis. (Funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the Ministry of Science and Technology of China; ClinicalTrials.gov number, NCT02251327.)
Funding Information:
Supported by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Department of Health and Human Services (contract HHSN2722000900050C and K24AI104830, to Dr. Dorman), the Intramural Research Program of the NIAID (support to Dr. Barry), and a grant from the Ministry of Science and Technology of China (2014DFA30340).
Publisher Copyright:
Copyright © 2017 Massachusetts Medical Society.
PY - 2017/9/14
Y1 - 2017/9/14
N2 - BACKGROUND Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid. METHODS We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/ RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions. RESULTS Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater. CONCLUSIONS This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis.
AB - BACKGROUND Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid. METHODS We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/ RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions. RESULTS Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater. CONCLUSIONS This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis.
UR - http://www.scopus.com/inward/record.url?scp=85029577241&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029577241&partnerID=8YFLogxK
U2 - 10.1056/NEJMoa1614915
DO - 10.1056/NEJMoa1614915
M3 - Article
C2 - 28902596
AN - SCOPUS:85029577241
SN - 0028-4793
VL - 377
SP - 1043
EP - 1054
JO - New England Journal of Medicine
JF - New England Journal of Medicine
IS - 11
ER -