Evolution of the bile salt nuclear receptor FXR in vertebrates

Erica J. Reschly, Ni Ai, Sean Ekins, William J. Welsh, Lee R. Hagey, Alan F. Hofmann, Matthew D. Krasowski

Research output: Contribution to journalArticlepeer-review

78 Scopus citations


Bile salts, the major end metabolites of cholesterol, vary significantly in structure across vertebrate species, suggesting that nuclear receptors binding these molecules may show adaptive evolutionary changes. We compared across species the bile salt specificity of the major transcriptional regulator of bile salt synthesis, the farnesoid X receptor (FXR). We found that FXRs have changed specificity for primary bile salts across species by altering the shape and size of the ligand binding pocket. In particular, the ligand binding pockets of sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) FXRs, as predicted by homology models, are flat and ideal for binding planar, evolutionarily early bile alcohols. In contrast, human FXR has a curved binding pocket best suited for the bent steroid ring configuration typical of evolutionarily more recent bile acids. We also found that the putative FXR from the sea squirt Ciona intestinalis, a chordate invertebrate, was completely insensitive to activation by bile salts but was activated by sulfated pregnane steroids, suggesting that the endogenous ligands of this receptor may be steroidal in nature. Our observations present an integrated picture of the coevolution of bile salt structure and of the binding pocket of their target nuclear receptor FXR.

Original languageEnglish (US)
Pages (from-to)1577-1587
Number of pages11
JournalJournal of lipid research
Issue number7
StatePublished - 2008

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Endocrinology
  • Cell Biology


  • Farnesoid X receptor
  • Fishes
  • Lampreys
  • Lithocholic acid
  • Molecular evolution
  • Molecular models
  • Nuclear hormone receptors
  • Sequence homology
  • Structure-activity relationship
  • Urochordata


Dive into the research topics of 'Evolution of the bile salt nuclear receptor FXR in vertebrates'. Together they form a unique fingerprint.

Cite this