TY - JOUR
T1 - Exact recovery of hard thresholding pursuit
AU - Yuan, Xiao Tong
AU - Li, Ping
AU - Zhang, Tong
N1 - Funding Information:
Xiao-Tong Yuan and Ping Li were partially supported by NSF-Bigdata-1419210, NSF-III-1360971, ONR-N00014-13-1-0764, and AFOSR-FA9550-13-1-0137. Xiao-Tong Yuan is also partially supported by NSFC-61402232, NSFC-61522308, and NSFJP-BK20141003. Tong Zhang is supported by NSF-IIS-1407939 and NSF-IIS-1250985.
Publisher Copyright:
© 2016 NIPS Foundation - All Rights Reserved.
PY - 2016
Y1 - 2016
N2 - The Hard Thresholding Pursuit (HTP) is a class of truncated gradient descent methods for finding sparse solutions of l0-constrained loss minimization problems. The HTP-style methods have been shown to have strong approximation guarantee and impressive numerical performance in high dimensional statistical learning applications. However, the current theoretical treatment of these methods has traditionally been restricted to the analysis of parameter estimation consistency. It remains an open problem to analyze the support recovery performance (a.k.a., sparsistency) of this type of methods for recovering the global minimizer of the original NP-hard problem. In this paper, we bridge this gap by showing, for the first time, that exact recovery of the global sparse minimizer is possible for HTP-style methods under restricted strong condition number bounding conditions. We further show that HTP-style methods are able to recover the support of certain relaxed sparse solutions without assuming bounded restricted strong condition number. Numerical results on simulated data confirms our theoretical predictions.
AB - The Hard Thresholding Pursuit (HTP) is a class of truncated gradient descent methods for finding sparse solutions of l0-constrained loss minimization problems. The HTP-style methods have been shown to have strong approximation guarantee and impressive numerical performance in high dimensional statistical learning applications. However, the current theoretical treatment of these methods has traditionally been restricted to the analysis of parameter estimation consistency. It remains an open problem to analyze the support recovery performance (a.k.a., sparsistency) of this type of methods for recovering the global minimizer of the original NP-hard problem. In this paper, we bridge this gap by showing, for the first time, that exact recovery of the global sparse minimizer is possible for HTP-style methods under restricted strong condition number bounding conditions. We further show that HTP-style methods are able to recover the support of certain relaxed sparse solutions without assuming bounded restricted strong condition number. Numerical results on simulated data confirms our theoretical predictions.
UR - http://www.scopus.com/inward/record.url?scp=85019235155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019235155&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85019235155
SN - 1049-5258
SP - 3565
EP - 3573
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 30th Annual Conference on Neural Information Processing Systems, NIPS 2016
Y2 - 5 December 2016 through 10 December 2016
ER -