Experimental and numerical study of transient electronic chip cooling by liquid flow in microchannel heat sink

Jingru Zhang, Tiantian Zhang, Yogesh Jaluria

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Cooling of electronic chips has become a critical aspect in the development of electronic devices. Overheating may cause the malfunction or damage of electronics and the time needed for heat removal is important. In this paper, an experimental setup and numerical model was developed to test the effects of different parameters and their influence on the transient electronic chip cooling by liquid flow in microchannel heat sinks. The temperature change with time of the system for different heat fluxes at different flow was determined, from which the response time can be obtained. Three different configurations of multi-microchannel heat sinks were tested during the experiment. Numerical models were then developed to simulate the transient cooling for two of the configurations. A good agreement between the experimental data and numerical results showed that single-channel models are capable of simulating the thermal behavior of the entire heat sink by applying appropriate assumptions and boundary conditions.

Original languageEnglish (US)
Title of host publicationASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
Pages1303-1309
Number of pages7
EditionPARTS A AND B
DOIs
StatePublished - 2010
EventASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010 - Vancouver, BC, Canada
Duration: Nov 12 2010Nov 18 2010

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
NumberPARTS A AND B
Volume7

Other

OtherASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
Country/TerritoryCanada
CityVancouver, BC
Period11/12/1011/18/10

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Experimental and numerical study of transient electronic chip cooling by liquid flow in microchannel heat sink'. Together they form a unique fingerprint.

Cite this