Explaining monotonic ranking functions

Abraham Gale, Amélie Marian

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Ranking functions are commonly used to assist in decision-making in a wide variety of applications. As the general public realizes the significant societal impacts of the widespread use of algorithms in decision-making, there has been a push towards explainability and transparency in decision processes and results, as well as demands to justify the fairness of the processes. In this paper, we focus on providing metrics towards explainability and transparency of ranking functions, with a focus towards making the ranking process understandable, a priori, so that decision-makers can make informed choices when designing their ranking selection process. We propose transparent participation metrics to clarify the ranking process, by assessing the contribution of each parameter used in the ranking function in the creation of the final ranked outcome, using information about the ranking functions themselves, as well as observations of the underlying distributions of the parameter values involved in the ranking. To evaluate the outcome of the ranking process, we propose diversity and disparity metrics to measure how similar the selected objects are to each other, and to the underlying data distribution. We evaluate the behavior of our metrics on synthetic data, as well as on data and ranking functions on two real-world scenarios: high school admissions and decathlon scoring.

Original languageEnglish (US)
Pages (from-to)640-652
Number of pages13
JournalProceedings of the VLDB Endowment
Issue number4
StatePublished - 2020

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Computer Science(all)


Dive into the research topics of 'Explaining monotonic ranking functions'. Together they form a unique fingerprint.

Cite this