Exploiting Topic-Based Adversarial Neural Network for Cross-Domain Keyphrase Extraction

Yanan Wang, Qi Liu, Chuan Qin, Tong Xu, Yijun Wang, Enhong Chen, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Keyphrases have been widely used in large document collections for providing a concise summary of document content. While significant efforts have been made on the task of automatic keyphrase extraction, existing methods have challenges in training a robust supervised model when there are insufficient labeled data in the resource-poor domains. To this end, in this paper, we propose a novel Topic-based Adversarial Neural Network (TANN) method, which aims at exploiting the unlabeled data in the target domain and the data in the resource-rich source domain. Specifically, we first explicitly incorporate the global topic information into the document representation using a topic correlation layer. Then, domain-invariant features are learned to allow the efficient transfer from the source domain to the target by utilizing adversarial training on the topic-based representation. Meanwhile, to balance the adversarial training and preserve the domain-private features in the target domain, we reconstruct the target data from both forward and backward directions. Finally, based on the learned features, keyphrase are extracted using a tagging method. Experiments on two realworld cross-domain scenarios demonstrate that our method can significantly improve the performance of keyphrase extraction on unlabeled or insufficiently labeled target domain.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Data Mining, ICDM 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages597-606
Number of pages10
ISBN (Electronic)9781538691588
DOIs
StatePublished - Dec 27 2018
Externally publishedYes
Event18th IEEE International Conference on Data Mining, ICDM 2018 - Singapore, Singapore
Duration: Nov 17 2018Nov 20 2018

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2018-November
ISSN (Print)1550-4786

Conference

Conference18th IEEE International Conference on Data Mining, ICDM 2018
Country/TerritorySingapore
CitySingapore
Period11/17/1811/20/18

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Keywords

  • Adversarial network
  • Keyphrase extraction
  • Transfer learning

Fingerprint

Dive into the research topics of 'Exploiting Topic-Based Adversarial Neural Network for Cross-Domain Keyphrase Extraction'. Together they form a unique fingerprint.

Cite this