Exploring brain-behavior relationships in the N-back task

Bidhan Lamichhane, Andrew Westbrook, Michael W. Cole, Todd S. Braver

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Working memory (WM) function has traditionally been investigated in terms of two dimensions: within-individual effects of WM load, and between-individual differences in task performance. In human neuroimaging studies, the N-back task has frequently been used to study both. A reliable finding is that activation in frontoparietal regions exhibits an inverted-U pattern, such that activity tends to decrease at high load levels. Yet it is not known whether such U-shaped patterns are a key individual differences factor that can predict load-related changes in task performance. The current study investigated this question by manipulating load levels across a much wider range than explored previously (N ​= ​1–6), and providing a more comprehensive examination of brain-behavior relationships. In a sample of healthy young adults (n ​= ​57), the analysis focused on a distinct region of left lateral prefrontal cortex (LPFC) identified in prior work to show a unique relationship with task performance and WM function. In this region it was the linear slope of load-related activity, rather than the U-shaped pattern, that was positively associated with individual differences in target accuracy. Comprehensive supplemental analyses revealed the brain-wide selectivity of this pattern. Target accuracy was also independently predicted by the global resting-state connectivity of this LPFC region. These effects were robust, as demonstrated by cross-validation analyses and out-of-sample prediction, and also critically, were primarily driven by the high-load conditions. Together, the results highlight the utility of high-load conditions for investigating individual differences in WM function.

Original languageEnglish (US)
Article number116683
StatePublished - May 15 2020

All Science Journal Classification (ASJC) codes

  • Neurology
  • Cognitive Neuroscience


  • Default mode network
  • Dorsolateral prefrontal cortex
  • Frontal-parietal network
  • N-back
  • Salience network
  • Working memory


Dive into the research topics of 'Exploring brain-behavior relationships in the N-back task'. Together they form a unique fingerprint.

Cite this