Exploring semantic properties of sentence embeddings

Xunjie Zhu, Tingfeng Li, Gerard De Melo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

52 Scopus citations

Abstract

Neural vector representations are ubiquitous throughout all subfields of NLP. While word vectors have been studied in much detail, thus far only little light has been shed on the properties of sentence embeddings. In this paper, we assess to what extent prominent sentence embedding methods exhibit select semantic properties. We propose a framework that generate triplets of sentences to explore how changes in the syntactic structure or semantics of a given sentence affect the similarities obtained between their sentence embeddings.

Original languageEnglish (US)
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Short Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages632-637
Number of pages6
ISBN (Electronic)9781948087346
DOIs
StatePublished - 2018
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: Jul 15 2018Jul 20 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume2

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
Country/TerritoryAustralia
CityMelbourne
Period7/15/187/20/18

All Science Journal Classification (ASJC) codes

  • Software
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Exploring semantic properties of sentence embeddings'. Together they form a unique fingerprint.

Cite this