TY - JOUR
T1 - Expression of NGF and NGF receptor mRNAs in the developing brain
T2 - Evidence for local delivery and action of NGF
AU - Lu, Bai
AU - Buck, C. R.
AU - Dreyfus, Cheryl
AU - Black, Ira B.
PY - 1989/1/1
Y1 - 1989/1/1
N2 - Nerve growth factor (NGF) is a well-documented target-derived trophic factor in the peripheral nervous system. Recently, proteins as well as mRNAs for both NGF and its receptor (NGF-R) have been detected in diverse areas in the central nervous system (CNS). Considerable evidence suggests that NGF also functions in the target synthesis/retrograde transport mode in the brain. For example, NGF is synthesized in the target hippocampus, as indicated by the presence of NGF message, and interacts with the receptors on terminals projecting from basal forebrain, where receptor mRNA is detectable. Spatial separation of NGF and receptor gene expression is consistent with the target mechanism of action. To ascertain whether local action may also occur in the CNS, we used sensitive nuclease protection assays to study the relationship of NGF and NGF-R expression in the developing brain. Our results indicate that in some brain areas, such as diencephalon, postnatal hippocampus, and olfactory bulb, NGF message was highly expressed, while receptor mRNA was virtually undetectable, suggesting that these areas serve as target sources of NGF for distant afferent neurons. By contrast, in other brain areas, such as cerebellum, striatum, perinatal olfactory bulb, and prenatal hippocampus, NGF and NGF-R mRNAs were coexpressed and coregulated developmentally. Consequently, local delivery and action of the trophic molecule may occur in these areas during these periods. We tentatively conclude that NGF may act through both distant and local modes in the developing CNS.
AB - Nerve growth factor (NGF) is a well-documented target-derived trophic factor in the peripheral nervous system. Recently, proteins as well as mRNAs for both NGF and its receptor (NGF-R) have been detected in diverse areas in the central nervous system (CNS). Considerable evidence suggests that NGF also functions in the target synthesis/retrograde transport mode in the brain. For example, NGF is synthesized in the target hippocampus, as indicated by the presence of NGF message, and interacts with the receptors on terminals projecting from basal forebrain, where receptor mRNA is detectable. Spatial separation of NGF and receptor gene expression is consistent with the target mechanism of action. To ascertain whether local action may also occur in the CNS, we used sensitive nuclease protection assays to study the relationship of NGF and NGF-R expression in the developing brain. Our results indicate that in some brain areas, such as diencephalon, postnatal hippocampus, and olfactory bulb, NGF message was highly expressed, while receptor mRNA was virtually undetectable, suggesting that these areas serve as target sources of NGF for distant afferent neurons. By contrast, in other brain areas, such as cerebellum, striatum, perinatal olfactory bulb, and prenatal hippocampus, NGF and NGF-R mRNAs were coexpressed and coregulated developmentally. Consequently, local delivery and action of the trophic molecule may occur in these areas during these periods. We tentatively conclude that NGF may act through both distant and local modes in the developing CNS.
UR - http://www.scopus.com/inward/record.url?scp=0024365473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024365473&partnerID=8YFLogxK
U2 - 10.1016/0014-4886(89)90029-0
DO - 10.1016/0014-4886(89)90029-0
M3 - Article
C2 - 2542076
AN - SCOPUS:0024365473
VL - 104
SP - 191
EP - 199
JO - Experimental Neurology
JF - Experimental Neurology
SN - 0014-4886
IS - 3
ER -