Fast High-Quality Tabletop Rearrangement in Bounded Workspace

Kai Gao, Darren Lau, Baichuan Huang, Kostas E. Bekris, Jingjin Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we examine the problem of rearranging many objects on a tabletop in a cluttered setting using overhand grasps. Efficient solutions for the problem, which capture a common task that we solve on a daily basis, are essential in enabling truly intelligent robotic manipulation. In a given instance, objects may need to be placed at temporary positions ('buffers') to complete the rearrangement, but allocating these buffer locations can be highly challenging in a cluttered environment. To tackle the challenge, a two-step baseline planner is first developed, which generates a primitive plan based on inherent combinatorial constraints induced by start and goal poses of the objects and then selects buffer locations assisted by the primitive plan. We then employ the 'lazy' planner in a tree search framework which is further sped up by adapting a novel preprocessing routine. Simulation experiments show our methods can quickly generate high-quality solutions and are more robust in solving large-scale instances than existing state-of-the-art approaches. source: github.com/arc-l/TRLB

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1961-1967
Number of pages7
ISBN (Electronic)9781728196817
DOIs
StatePublished - 2022
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: May 23 2022May 27 2022

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Fast High-Quality Tabletop Rearrangement in Bounded Workspace'. Together they form a unique fingerprint.

Cite this