Fatigue characterization of piezo-active beams in bending

Jonathan D. Degroff, Onur Bilgen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This paper presents the fatigue characterization of piezoactive beams in bending with surface bonded Macro-Fiber Composite actuators. Three substrate materials are considered: stainless steel, aluminum, and brass. First, the bending response is quantified theoretically using the classical laminate plate theory. The theoretical bending results indicate that the beam with the steel substrate had the largest curvature, and the specimen with the aluminum had the least. Next, midpoint deflection in a simply supported configuration in response to harmonic quasi-static actuation is experimentally measured. The results from the experiments showed no evidence of degradation of actuation for up to four million cycles at the harmonic excitation amplitude of 500 V; however, the results appeared highly sensitive to temperature.

Original languageEnglish (US)
Title of host publicationModeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791858264
DOIs
StatePublished - 2017
EventASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017 - Snowbird, United States
Duration: Sep 18 2017Sep 20 2017

Publication series

NameASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Volume2

Other

OtherASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Country/TerritoryUnited States
CitySnowbird
Period9/18/179/20/17

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Civil and Structural Engineering
  • Building and Construction
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Fatigue characterization of piezo-active beams in bending'. Together they form a unique fingerprint.

Cite this