Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain

Justin L. Wagner, Sean P. Kearney, Steven J. Beresh, Edward P. DeMauro, Brian O. Pruett

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

Original languageEnglish (US)
Article number213
Pages (from-to)1-12
Number of pages12
JournalExperiments in Fluids
Volume56
Issue number12
DOIs
StatePublished - Dec 1 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain'. Together they form a unique fingerprint.

Cite this